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Abstract: The so-called Dual Reciprocity Boundary Element Method (DRBEM) has been a popular 

alternative scheme designed to alleviate problems encountered when using the traditional BEM for 

numerically solving engineering problems that are described by PDEs. The method starts with writing 

the right-hand-side of Poisson equation as a summation of a pre-chosen multivariate function known as 

‘Radial Basis Function (RBF)’.  Nevertheless, a common undesirable feature of using RBFs is the 

appearance of the so-called ‘shape parameter’ whose value greatly affects the solution accuracy. In this 

work, a new form of RBF containing no shape (so that it can be called ‘shapefree/shapeless’) is invented, 

proposed and applied in conjunction with DRBEM is validated numerically. The solutions obtained are 

compared against both exact ones and those presented in literature where appropriate, for validation. It 

is found that reasonably and comparatively good approximated solutions of PDEs can still be obtained 

without the difficulty of choosing a good shape for RBF used.  

Key-Words: Dual reciprocity, Boundary element method, Shapeless parameter, Radial basis function, 

Partial differential equation, Numerical solution 
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1 Introduction 

It is known that a great amount of engineering 

and science problems occurring nowadays can be 

modelled by some forms of mathematical 

formulas where differential equations (DEs) are 

amongst those common and popular ones. This 

inevitably makes finding solutions to these DEs 

crucial and there are mainly two ways to do this 

mathematically; analytically and numerically. 

Unfortunately, most DEs involved are complex 

and contain several surrounding factors making 

finding analytic solutions extremely difficult or 

not possible in many cases. Attempts then have 

been put into approximating solution using some 

numerical methods with the use also from the 

advanced technology in computing systems.  

    Traditionally, there numerical approaches are 

well known and have long been used in a wide 

range of applications and they are finite 

difference (FD), finite element (FE), and finite 

volume (FV) method. Appearing as an alternative 

numerical method over the last two decades, the 
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boundary element method (BEM) has become an 

important tool for solving a wide range of applied 

sciences and engineering. Like other those 

traditional methods, BEM is, nevertheless, not 

without its challenges particularly when applied 

to nonlinear and/or time-dependence. This 

remained a pain until 1982 when Nardini and 

Brebbia  [1] proposed a way to overcome the 

shortcoming. The approach involves splitting the 

solution into two parts; complementary solutions 

of its homogeneous form and the particular 

solutions of the inhomogeneous counterpart, and 

they named it as ‘Dual Reciprocity Boundary 

Element Method (DRBEM). Since the particular 

solutions are not always available especially in 

complex problems, the inhomogeneous term of 

the PDE is approximated by a series of simple 

functions and transformed to the boundary 

integrals employing particular solutions of 

considered problem. The most widely used 

approximating functions in DRBEM are radial 

basis functions (RBFs) for which particular 

solutions can be easily determined [2].  

Radial Basis Functions (RBF),  , are 

commonly found as multivariate functions whose 

values are dependent only on the distance from 

the origin. This means that ( ) ( )r  x  with 

nx    and r ; or, in other words,  on the 

distance from a point of a given set  jx , and 

( ) ( )j jr   x x . Here, 
2j jr  x x is 

the Euclidean distance and any function   

satisfying 
2

( ) ( ) x x  is a radial function 

and have been receiving a great amount of 

interest from researchers from many branches of 

applications [3]. Some of the most popular ones 

are [1]; 

 Gaussian (GS) : 

     
2

exp
r

r





  

 Inverse Multiquadric (IMQ) : 

     
2

1/ 1r r     

 Multiquadric (MQ) :  

     
2

1r r    

 Inverse quadratic (IQ) :  

     
2

1/ 1r r   
 

 

 Wendland (WL) :  

          8 3 2
1 32 25 8 1r r r r r          

 Cubic Matérn (CU) :  

       2 3
15 15 6r r r r        

Here,    is called shape parameter, very often 

determined by the user.  

    As can be seen from above list, one of the most 

challenging tasks for utilizing RBFs, finding a 

suitable or optimal shape parameter,  , is crucial 

and this tasks is not straightforward. In the past, 

some attempts to pinpoint the optimal value of 

  involve the classic work of Hardy [4] where 

it was shown that by fixing the shape at 

 1 0.815d    , where  
1

1
N

i

i

d N d


   , and 
id  

is the distance from the node to its nearest 

neighbour, good results should be anticipated.  

Also, in the work of Franke and Schaback [5] 

where the choice of a fixed shape of the form 

0.8 N D   with D  being the diameter of the 

smallest circle containing all data nodes, can also 

be a good alternative.  In 2000, Zhang et al. [6] 

demonstrated and concluded that the optimal 

shape parameter is highly problem dependent. In 

2002, Wang and Lui [7] pointed out that by 

analysing the condition number of the collocation 

matrix, a suitable range of derivable values of 

can be found. Later in 2003, Lee et al. [8] 

suggested that the final numerical solutions 

obtained are found to be less affected by the 

method when the approximation is applied 

locally rather than globally. A rather recent work 

is the selection of an interval for variable shape 

parameter by  Biazar and Hosami in 2016 [9], 

where a novel algorithm for determining and 

interval was proposed, please see also [10-13] 

and references herein. Another confirmation on 

problem-dependent nature of shape value was 

confirmed in the work of  Davydov and Oanh 

[14]. A more recent work is the application of the 

traditional Kansa collocation to linear PDE based 

on a variable shape parameter called symmetric 
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variable shape parameter (SVSP) carried out by 

Ranjbar [15]. Some relevant studies can be found 

in [16] and [17].  

      Additionally, there have also been some 

researches carried out on finding the optimal 

shape automatically based on some 

computational factors already involved in the 

system. Some works regarding this figure are 

listed in Table 1. 

Table 1. Some choices proposed in literature 
 

Refs 
Formulation of     

for jth-element 

Kansa[18]  1

1 2
2 1

2 max

min 2

min

j

N

j


 









 
  
   

 

, 1,2,...,j N  

Kansa and 

Carlson 

[19]  

max min
min

1
j j

N

 
 

 
   

 
    

0,1,2,..., 1j N   

Sarra [20]   

 

min

max min (1, )

j

rand N

 

 



  
 

Sarra and 

Sturgill 

[21] 
 

min

max min (1, )
j

nh rand N




 

 
  

   

 

Sayan and 

Krittidej 

[22] 

 

1

22
2 max
min 2

min

min max min

(1 )j




  



    

  
     
   

    

Where 
max

ij

ij
i j

Pe

Pe




  and 

k

k

c LU
Pe

D c D
 



u
 

      Up to this point, it has to be noted that radial 

basis functions were originally invented for 

applying to function approximation and 

interpolation, and later applied in the context of 

meshfree/meshless numerical methods for 

solving PDEs. It means that the issues related to 

the shape parameter is based on such problems. 

Investigations mentioned so far, also some in 

Table 1, are not yet related to DRBEM (except 

only one done in [22]). This prompts an 

inspiration of this work.   

   Despite all the attempts being put into this topic 

of optimal shape finding procedure, it remains 

open topic and is still under a great intention of 

nowadays research. In this work, a new form of 

RBF containing no ‘ad-hoc’ shape parameters is 

proposed and its performance is investigated in 

the context of DRBEM. Section II provides the 

fundamental concept of the DRBEM where 

Section III contains the information about the 

proposed RBF. Some numerical testing cases are 

presented in Section IV and some important 

findings and conclusions are drawn in Section V. 

2. The Dual Reciprocity Boundary 

Element Method (DRBEM) 

The mathematical construction of the dual 

reciprocity boundary element method (DRBEM) 

can start with the Poisson equation as follows; 

  2 ,u b x y   (1) 

Where the solution to the above problem can be 

expressed as the sum of the solution of 

homogenous and a particular solution as;  

 ˆ
hu u u   (2) 

Where 
hu is the solution of the homogeneous 

equation and û is a particular solution.  

    If there are N  boundary nodes and L  internal 

nodes, there will be N   L   interpolation 

functions, jf
 
and consequently N   L  particular 

solutions, ˆ
ju . The approximation of b over 

domain   is written, for an   thi   node, in the 

following form. 

    
1

,   ,
N L

i j ij

j

b x y f x y





 

(3) 

Then we have a matrix equation for the unknown 

coefficients : 1,2,3, ,j j N L     as follows; 

 b F  (4) 

With the following detains.  
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1

2

,

,

,N L

b x y

b x y

b x y

 
 
 
 
 
  

b ,

1

2

N L






 

 
 
 
 
 
 

, and  

11 12 1(N L)

21 22 2(N L)

(N L)1 (N L)2 (N L)(N L)

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

f x, y f x, y f x, y

f x, y f x, y f x, y

f x, y f x, y f x, y





   

 
 
 
 
 
  

F

The particular solution, ˆ ju , and the 

interpolation function, jf  , are linked through 

the relation.  

 
2  ˆ

j ju f 
 (5) 

Substituting Eq. (5) into Eq. (3) leads; 

  2

1

ˆ 
N L

j

j

b u




 
 

(6) 

Therefore, from Eq. (1) and with the expression 

of 𝑏 in Eq. (3), we then obtain its equivalent 

integral form expressed as;  

* *

* *

1

ˆ ˆ

   

  ˆ  

i i

N L

j i ij j j

j

c u q ud u qd

c u q u d u q d

 



  

   

 
     

 

 

  
 

     

(7) 

Where *u  is the fundamental solution and the 

term ˆ jq  is defined as 
ˆ

ˆ
j

j

u
q



n

  , where n  is 

the unit outward normal to  , and can be written 

as follows; 

 
ˆ ˆ

ˆ
j j

j

u ux y
q

x n y n

  
 
   

 

 (8) 

Applying Green’s theorem, the boundary 

element approximation to Eq. (7), then it 

becomes, at an ith -node; 

* *

1 1

* *

1 1 1

ˆ

 

  ˆ ˆ

k k

k k

N N

i i

k k

N L N N

j i ij j j

j k k

c u q ud u qd

c u q u d u q d

  



   

   

 
     

 
 

  

   

  (9) 

For 1,...,Ni   . 

After introducing the interpolation function 

and integrating over each boundary elements,  

Eq. (9) can be re-written in terms of nodal values 

as; 

1 1

1 1 1

 

    ˆ ˆ ˆ

N N

i i ik k ik k

k k

N L N N

j i ij ik kj ik kj

j k k

c u H u G q

c u H u G q

 



  

 

 
   

 

 

  
 

(10) 

Where the definition of the terms 
ikH   and  

ikG   

can be found in Chanthawara et.al. [2] and Toutip 

[23]. The index 𝑘 is used for the boundary nodes 

which are the field points. After application to all 

boundary nodes, using a collocation technique, 

Eq. (10) can be compactly expressed in matrix 

form as follows;  

  ˆˆ    Hu Gq HU GQ
 

(11) 

By substituting 1   F b  from Eq. (4), into 

Eq. (11) making the right hand side of Eq. (11) a 

known vector. Therefore, it can be rewritten as; 

   Hu Gq d  (12) 

where   1  .ˆˆ  d HU GQ F b  Applying 

boundary condition(s) to Eq. (12), then it can be 

seen as the simple form as follow;  

    Ax y  (13) 

Where  𝐱  contains  𝑁 unknown boundary values 

of ’u s and ’q s  .     

    After Eq. (13) is solved using standard 

techniques such as Gaussian elimination, the 

values at any internal node can be calculated, i.e. 

1ic   as expressed in Eq. (10) where each one 

involves a separate multiplication of known 

vectors and matrices.  

1 1

1 1 1

 

  =  ˆ ˆ ˆ  

N N

i ik k ik k

k k

N L N N

j i ij ik kj ik kj

j k k

u H u G q

c u H u G q

 



  

  

 
  

 

 

  

  (14) 

The further use of the DRBEM derivation 

explained so far depends on the form of the 
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governing equation under investigation. 

Therefore, examples where DRBEM is being 

implemented for each case and type of equations 

are later provided in Section 4.  

3. The Proposed Hybrid RBF 

The idea of combining different forms of RBF is 

becoming an alternative choice. A recent study 

on this matter was done in 2018 where a 

combination of Gaussian and Cubic forms of 

RBF is formed by Mishra et.al. [24]. The main 

application of their work is on interpolation of 

data and it is to be noted that the attempt to find 

an adequate choice of    still remains a burden, 

requiring extra treatments. In this work, two of 

the most popular forms of RBF defined as 

follows are under investigation; 

1. Multiquadric (MQ) : 

   
1

2 22

2 2

MQ

j j     
  

x x x x
 

(15) 

2. Polyharmonic (PHC) :  

   
5

2

PHC

j j   x x x x
 

(16) 

    In this work, the shape parameter    is now 

to be fixed at 1, and a new locally self-auto-

adaptive weight    is proposed, as follows;  

 

   

 

2

1
2 2

2

5

2

1 1

HyB

ij i j

ij j

ij i j









    
  

 

x x

x x

x x

 (17) 

where 
2 21 ,

maxij i j i j
i j N 


 

   
  

x x x x  is 

adaptable purely based on the location of the 

interpolation vector jx and the centre at hand, 

ix . This shall act as a self-adaptive parameter 

with no further input from user. This proposed 

RBF shall be referred to as ‘HyB’ for short 

throughout the document. 

4. Numerical Experiments and 

General Discussion 

All numerical simulations under this 

investigation were carried out on an Intel(R) 

Core(TM) i7-5500U CPU @ 2.4GHz with 8.00 

GB of RAM. It has to be mentioned also that for 

comparison purpose, all results produced by MQ, 

PHC and HyB are shown against one another in 

all the cases. For MQ, in particular, the best 

choice of shape parameter for each experiment 

was obtained purely by carrying out a large 

number of simulations and employing the error 

norm related and they are listed in the following 

Section. 

4.1 Error norms 

All numerical solutions obtained from the whole 

experiment are validated mainly by comparing 

to the exact or analytical solutions. For this, the 

following error norms are used;   

(1) Maximum Error ( L
 ) ; 

   .

1
max ext

i i

appx

i N
L u u


 

 x x
 

(18) 

(2) Root-Mean-Square Error (
rmsL  ) ; 

    
1/2

2
.

1

1 N
ext appx

i irms

j

L u u
N






 
  
 

 x x  (19) 

  (3) Percentage Relative Error (  % iRel.Err. x ) 

 

   

 

.

%

100

ext appx

i

i

i

ext

i

Rel.Err.

u u

u




 

x

x x

x     
(20) 

   (4) Absolute Error ( . .Abs Err ) 

     .. . ext app

j

x

i iAbs Er u ur x x x
  

(21) 

Where    .,e t

i i

x appxu ux x are the approximate 

and exact solution respectively, computed at 

node 
ix  with N   being the total number of 

nodes.  

4.2 Test case 1: interpolation problem 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.17 Krittidej Chanthawara, Sayan Kaennakham

E-ISSN: 2224-2880 163 Volume 20, 2021



The interpolation problem starts with a set of 

discrete data   d

1
,

N

i ii
 X x x  where for each 

ix  there is its corresponding real value 
iy  , 

then the task is to construct a continuous function 
d(x) :    such that;  

 ( )i iy x  , 1,2,...,i N  (22) 

Since the main concept of DRBEM is to 

approximate term  ,ib x y , in Eq. (3), by a linear 

combination of RBF as a collocation manner, 

the first example to test out the proposed RBF 

here is taken to be a benchmark and well-known 

Franke-type function [2]. The function defined 

on a unit square-domain is expressed as;  

 
   

   

   

   

2 2

2

2 2

2 2

9 2
, 0.75exp

4 4

9 1
0.75exp

49 10

9 7
0.5exp

4 4

0.

9 2

9

2exp 9 4 9 7

1

9 3

y

y

y

x
f x y

x

x

x y

 
   

  

 
   

  

 
   

  

    












 (23) 

The interpolation function, ( )if x  at the i th  

centre node, 
ix  , is defined as a linear 

combination of the inverse quadratic radial basis 

function as;  

  
2

1

( )
N

HyB

i j ij i j

j

f



 


 x x x

  

(24) 

With ( ) ( )i if fx x  for all 1,2,...,i N   with a 

set of N N L    computational nodes 

uniformly-distributed over the unit square (i.e. 

the summation of internal and boundary nodes).  

By imposing this function on all nodes, it leads 

to the linear system expressed as;  

     11N N NN
   

A α = F  

Where  

     

     

     

11 12 1

21 22 2

1 2

...

...

...

HyB HyB HyB

N

HyB HyB HyB

N

HyB HyB HyB

N N N N N N

r r r

r r r

r r r





   
 

  

  

  


 
 
 
 
 
 
  

A  

Where 
2ij i jr  x x . The coefficient matrix; 

T

1 2 ...
N      α  , and with the known 

vector function  

     1 2 ...
T

N
f f f 

 
 

F x x x . By the 

well-known Gauss-Seidel method, the 

coefficient matrix α  is easily obtained and it 

will then be used to interpolate the value of  

 ,f x y   at a new set of interpolation nodes 

via. the same linear summation as defined 

above.  

    Table 2 lists the measurement on absolute 

errors  . . jAbs Err x taken at some selected 

locations over the domain with two cases; 

49N   and 225N   . It can be clearly seen 

from the Table that the increase in the number 

of computational nodes, a better quality of 

results can be expected from all three RBFs. It 

should be noted, nevertheless, that where MQ 

and HyB remain nearly the same level of 

solution quality, it is PHC that has the biggest 

absolute errors in overall. Also, where MQ 

requires a great amount of effort for finding the 

best shape for each case, this burden has no 

effect on HyB indicating a much more 

convenient practical use. For 49N   , the 

computed solution obtained from HyB is plotted 

against the exact ones and is illustrated in Fig. 1.  

 

Table 2. A comparison of absolute errors measured at a set of selected locations when using two levels 

of node density; 49N    and 225N   . 

 ,j x yx  
 . . jAbs Err x With 49N     . . jAbs Err x With 225N    

MQ PHC HyB MQ PHC HyB 
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( 4.5best  ) ( 0.74best  ) 

(0.00,0.66) 

(0.00,1.00) 

(0.33,0.00) 

(0.33,0.33) 

(0.33,0.66) 

(0.33,1.00) 

1.70E-03 

1.64E-02 

9.99E-02 

9.99E-03 

6.29E-02 

9.20E-02 

3.37E-01 

2.21E-01 

4.09E-01 

3.22E-02 

2.66E-01 

2.09E-02 

2.51E-03 

5.23E-03 

8.15E-02 

0.25E-04 

1.22E-04 

5.04E-03 

0.25E-04 

2.33E-04 

5.26E-03 

1.02E-04 

2.39E-04 

0.15E-03 

1.02E-03 

0.27E-03 

2.66E-02 

9.21E-02 

8.05E-03 

9.20E-03 

0.21E-04 

1.25E-04 

5.66E-04 

0.27E-05 

5.11E-04 

0.24E-05 

 

Fig. 1. Exact solution profile plotted against those 

interpolated by the proposed RBF using   

49N   . 

4.3 Test case 2: Poisson with 

nonrectangular domain 

The second case used to monitor the quality of 

results produced by the proposed RBF is a 

Possion form defined over a nonrectangular 

domain. This problem has recently been studied 

numerically by Kaennakham and Chuathong 

[25] where a global collocation meshfree 

scheme was applied.  

The equation is shown below; 

 

2 2
2

2 2

u u
x

x y

 
 

 
 

(25) 

This is defined on the domain with an elliptical 

boundary, expressed as;  

 
2

2 1
4

x
y 

 
(26) 

Where the boundary condition is taken directly 

from the exact solution which is expressed as 

follows; 

 2 21
( , ) 50 8 33.6

246
u x y x y       (27) 

Where 

2
2 1

4

x
y

 
   
 

  

  The DRBEM implementation explained in 

Section 2 is now straightforwardly done by 

rearranging Eq (12);  

  Hu Gq d   

Since d  is a known vector and after applying the 

boundary conditions, it then can be seen in the 

form of Eq . (13). 

      In this example, the main focus is paid to the 

effect of the density of nodes contained in the 

domain and for this, at least 4 levels of node 

density are investigated. Table 3 displays four 

levels of density where the number of boundary 

nodes is kept constant at 40 for all cases. With 

two error norms, 
rmsL  and  L

 , under 

consideration, it is found once more time that MQ 

and HyB can produce high quality of accuracy 

whereas PHC has the lowest accuracy for node 

densities. The main shortcoming, however, is still 

with the use of MQ where the best shape, 
Best  , 

is found not to reveal any correlation with the 

increase of nodes confirming the problem-

dependent of MQ.  Without the extra task of 

finding an optimal shape, HyB, on the other hand, 

is seen to gradually produce better results when 

nodes are denser (with  5.41 04rmsL E  for 

91N     to  0.25 04rmsL E   for 431N   ). 

Fig. 2 depicts the problem domain and solutions 
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produced by HyB plotted against the exact 

solutions. 

 

 

Table 3. Root mean square (
rmsL ) and maximum error norms ( L

) measured from using different 

numbers of computational nodes. 

RBF 
91N    165N    217N     431N     

rmsL  L
 

rmsL  L
 

rmsL  L
 

rmsL  L
 

MQ 

 ( Best  ) 

2.25E-04 

(11.25) 

2.01E-03 

(11.25) 

1.89E-03 

(4.05) 

2.08E-02 

(4.05) 

2.14E-03 

(1.58) 

6.25E-02 

(1.58) 

8.06E-04 

(21.33) 

6.26E-03 

(21.33) 

PHC 1.96E-03 2.11E-02 1.58E-03 3.45E-02 2.03E-03 6.01E-02 7.12E-03 3.25E-02 

HyB 5.41E-04 1.77E-03 3.02E-04 8.02E-03 1.21E-04 0.59E-04 0.25E-04 2.11E-04 

  

Fig. 2. Above) Problem domain with  91N    computational nodes, and below) solutions comparison 

between those produced by the HyB and the exact ones.

4.4 Test case 3: transient convection-

diffusion problem 

Convection diffusion problems are known to 

be  governed PDE mathematical models and 

they are found to appear in many branches of 

sciences and engineering such as biological, 

physical chemical, physical in fluid mechanics, 

astrophysics, meteorology, and multiphase flow 

in oil reservoirs, polymer flow and many other 

areas [26]  .   

The unsteady-state form of the equation can 

be represented by;  

 
2 2

2 2

 

      , ,

x y

x y

u u u
V V

t x y

u u
u g x y t

x y
  

  
 

  

 
   

 

 (28) 

Where ,  x yV V  are convection coefficients, and 

,  x y     are diffusion coefficients. The last two 

terms u   and the source term  , ,g x y t  are 

additional and needed only in specific cases. For 

the test cases studied in this work, it is set that  

x y      and then it leads to the following 

expression;  
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Leading to;  

 

2 2

2 2
 

1
   x y

u u

x y

u u u
V V u g x

t x y




 


 

    
      

    

 

(30) 

Subject to the initial condition 

   1, ,0 ,u x y x y   and the boundary 

condition    2, , , ,u x y t x y t  with 0t    and 

  is a domain of the problem,   is its 

boundary, 
1 2,   are known functions.  

In this case, we set 0.8 x yV V   and 

0. 1  0x y   with zero sink and zero source 

terms, i.e.   0u g x   . The governing 

equation is of the form as shown below;  

2 2

2 2

1
   0.8

0.01

u u u u u

x y t x y

      
     

         

(31)  

Where 

      2, , 0.5 , 2 , 0,x y D x y x y t T     

. Its exact solution is defined as follows;  

   
1

, , exp ,
4 1

u x y t
t


                                            

(32)
 

Where 

 

 

 

 

2 2
0.8 0.5 0.8 0.5

( , , )
0.01 4 1 0.01 4 1

x t y t
x y t

t t


   
  

 

The implementation of DRBEM to the type of 

problem starts with approximating Eq. (1) by;  

 
1

  0.
0

8 0.8
.01

u u u
b

t x y

    
    

       

   (33) 

For the time derivative, the forward difference 

method is expressed as 
1t tu u u

u
t t

 
 
 

; 

Substituting 1 1F F
,

u u

x x y y

    
 

   
F u F u   and 

Eq. (33) into Eq. (31) and by setting.  

 
1 1F F

0.8 0.8
x y

  
 

 
C F F

 
(34) 

The following expressions is obtained. 

  
0.01

1
 u  Hu Gq S Cu

 
(35) 

Let 
1

0.01
 R S  , it leads to; 

   u  Hu Gq R Cu  (36) 

And then rearranging the time-derivative term 

with the forward difference, it becomes; 

1 1  
    

  

t t tR R
RC H u Gq u

t t  
(37) 

Note that the elements of matrices  ,  ,H G R   

depend only on geometrical data. Thus, they can 

all be computed ones and stored. 

 Table 4 presents the percentage relative error 

measured at 7 selected points over the problem 

domain at two time levels ; 0.5t  and 1.0t  . 

These two sets of solutions use the same 

computational setups; 91N   and 0.005t  . 

At early state of time, i.e. 0.5t  , it is observed 

that all three RBF types provide approximately 

the same level of accuracy. When time 

progresses, it is interestingly seen that both MQ 

and PHC are found to have lost their capability of 

producing better accuracy. It is actually solutions 

produced by HyB that are seen to remain in good 

quality even when time increases. This indicates 

another desirable aspect of the newly proposed 

form of RBF.  

With the maximum error norm ( L ) used to 

monitor the growth in error when increasing time 

further, i.e.1.1 2.0t   with 144N   , 

moreover, Fig. 3 reveals that HyB is considerably 

less sensitive to the number of time increment 

than both MQ and PHC. This observation 

strongly confirms the benefit of the hybrid form 

of RBF that can be more reliable. Furthermore, it 

has to be stated again that the hard work of 

finding the most suitable shape parameter when 
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using MQ still persisted in this case where the 

values shown here are obtained purely by 

carrying out a large amount of numerical tests.

Table 4. Comparison of  % . .( )iRel Err x  of solutions numerically obtained by using three RBFs at 

two different time levels; 0.5t  and 1.0t  ; measured at selected locations over the domain. 

( , )x y  
0.5t   1.0t   

MQ 

( 1.00best  ) 
PHC HyB 

MQ 

( 5.15best  ) 
PHC HyB 

(0.6,0.6) 1.61E-01 8.62E-02 5.24E-02 1.971E-01 9.84E-02 2.77E-01 

(0.8,0.8) 2.35E-01 8.05E-02 8.10E-02 0.774E-01 3.02E-01 1.59E-02 

(1.0,1.0) 1.47E-01 4.44E-01 4.17E-02 0.690E-01 1.02E-01 1.25E-02 

(1.2,1.2) 1.94E-02 8.14E-02 5.05E-01 1.704E-00 2.51E-01 0.94E-02 

(1.4,1.4) 2.04E-01 8.56E-02 2.79E-02 1.204E-00 1.10E-01 3.04E-02 

(1.6,1.6) 1.44E-02 7.12E-02 1.61E-02 0.821E-01 1.57E-01 2.02E-02 

(1.8,1.8) 1.29E-01 5.50E-01 5.82E-02 1.604E-01 0.91E-02 3.30E-01 

 

Fig. 3 Maximum error ( L
)  measured over the 

domain at a wide range computational times (

1.1 2.0t  ) with 144N   . 

 

 

5. Conclusion 

In this work, some challenging partial differential 

equations are numerically solved by the dual 

reciprocity boundary element method (DRBEM). 

Unlike the usual manner of applying DRBEM where 

the main ingredient (the RBF used) depends highly 

on the choice of its shape parameter, a new form of 

radial basis function containing no shape is being 

proposed in this work. Instead, a locally self-auto-

adaptive weight is introduced to play the main rule.  

Some numerical benchmarking tests were carried out 

and some interesting findings are;  

1. The new RBF is found to produce results which 

are slightly better than those provided by MQ or 

PHC. 

2. The difficulty usually encountered when 

searching for an optimal choice of shape 

parameter is no longer included, saving both 

time and effort.  

3. For time-dependent problem, the new RBF is 

seen to preserve good quality of results even 

when time is further increased where the other 

two RBF forms are losing their accuracy.  

4. A less sensitivity to the number of 

computational nodes is also observed with using 

the proposed RBF.   

Although some positive and promising aspects have 

been observed in this work, it is still a challenging 

task to further investigate under some more complex 

problems. The dual reciprocity boundary element 

method (DRBEM) has been widely applied to a 

branch of engineering problems and as far as 
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DRBEM goes, the choice of RBF proposed in this 

work shall well be an alternative tool in order to get 

rid of the burden of choosing a good shape parameter. 

Limitations and challenges, however, might occur 

when dealing with highly nonlinear PDEs and this 

remains one of our future research topics.  
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